Power and Robustness in Normality Tests with Montecarlo Simulation

Authors

DOI:

https://doi.org/10.29394/Scientific.issn.2542-2987.2020.5.18.5.108-119

Keywords:

Montecarlo simulation, power, sturdiness, normality tests

Abstract

The general objective of this research was to examine the power and robustness of normality tests in large and small samples, generated with Monte Carlo simulation. Non-parametric hypothesis tests were applied to measure the degree of discrepancy between the empirical distributions and the normal cumulative distribution function, which analyze the correlation between the theoretical and experimental distribution and those that are supported by the study of asymmetry and kurtosis. The comparison was made in two groups with different sample sizes. In large samples, the Kolmogorov-Smirnov tests were compared; Pearson's Chi-Square; Jarque-Bera and Geary; in the small samples Shapiro-Wilk; Cramér-von Mises; Lilliefors and Watson. The contrasts were carried out with the RStudio computer program and the rejection criterion for the null hypotheses was made through the p-value. In conclusion, the most robust test in large samples is Kolmogorov, estimating that its probability is less than 0.11. In small samples this result corresponds to Shapiro-Wilk with an estimate of less than 0.14. Regarding the power in the normality tests for large samples, it was shown that the most powerful of them is the Jarque Bera test, with a confidence interval between 0.86 and 1. For small samples, none of the tests under study it turned out powerful.

Downloads

Download data is not yet available.

Author Biography

Elizabeth María Gandica de Roa, Universidad Nacional Experimental del Táchira, UNET

Nacida en San Cristóbal, estado Táchira, Venezuela. Licenciada en Matemáticas de la Universidad Simón Bolívar (USB, 1991) de Caracas, Venezuela; Magister en matemáticas de la Universidad Simón Bolívar (USB, 1993); Especialista en Administración de Empresas; y Magister en Dirección de Empresas, egresada de la Universidad Católica del Uruguay “Dámaso Antonio Larrañaga” (UCU, 1998); Doctora en Educación, egresada de la Universidad Pedagógica Experimental Libertador (UPEL, 2016); Profesora Titular a dedicación exclusiva en la Universidad Nacional Experimental del Táchira (UNET); Línea de Investigación estadística y representaciones sociales; Ponente en congresos nacionales e internacionales sobre  matemática, estadística, filosofía y lógica.

References

Arshad, M., Rasool, M., & Ahmad, M. (2003). Anderson Darling and Modified Anderson Darling Tests for Generalized Pareto Distribution. Journal of Applied Sciences, 3(2), 85-88, e-ISSN: 1812-5662. Recovered from: https://dx.doi.org/10.3923/jas.2003.85.88

Bradley, J. (1978). Robustness?. British Journal of Mathematical and Statistical Psychology, 31, 144-152, e-ISSN: 0007-1102. Recovered from: https://doi.org/10.1111/j.2044-8317.1978.tb00581.x

Cabrera, G., Zanazzi, J., Zanazzi, J. & Boaglio, L. (2017). Comparación de potencias en pruebas estadísticas de normalidad, con datos escasos. Revista Facultad de Ciencias Exactas, Físicas y Naturales, 4(2), 47-52, e-ISSN: 2362-2539. Recuperado de: https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/16775

Hurtado, F. (2020). Fundamentos Metodológicos de la Investigación: El Génesis del Nuevo Conocimiento. Revista Scientific, 5(16), 99-119, e-ISSN: 2542-2987. Recuperado de: https://doi.org/10.29394/Scientific.issn.2542-2987.2020.5.16.5.99-119

Islam, T. (2011). Normality Testing- A New Direction. International Journal of Business and Social Science, 2(3), 115-118, e-ISSN: 2219-6021. Recovered from: http://www.ijbssnet.com/journal/index/169

Published

2020-11-05

How to Cite

Gandica de Roa, E. M. (2020). Power and Robustness in Normality Tests with Montecarlo Simulation. Revista Scientific, 5(18), 108–119. https://doi.org/10.29394/Scientific.issn.2542-2987.2020.5.18.5.108-119

Similar Articles

You may also start an advanced similarity search for this article.