Ethical Implications of Artificial Intelligence: Development, Impact and Challenges in Today's Society
Implicaciones Éticas de la Inteligencia Artificial: Desarrollo, Impacto y Desafíos en la Sociedad Actual
DOI:
https://doi.org/10.29394/Scientific.issn.2542-2987.2025.10.E1.0.10-24Keywords:
artificial intelligence, ethics of technology, decision making, data protection, social justiceAbstract
This research analyzes the ethical implications of Artificial Intelligence (AI) in contemporary society based on four fundamental principles: beneficence, non-maleficence, autonomy, and justice. The study argues that technological development must be subordinated to human well-being, establishing a balance between innovation and ethical responsibility. As noted by Floridi and Cowls (2019); these principles, complemented by explicability and accountability, constitute a conceptual framework for evaluating the ethical impact of AI. According to Mitchell, et al. (2019); they propose standardized documentation through “Model Cards” to ensure transparency, while Barreto (2012); emphasizes the importance of rigorous metrics for evaluating social development. The research examines critical challenges such as privacy, automated decision-making, and algorithmic biases, demonstrating that these are not mere technical problems but manifestations of structural inequalities. As presented by Rendón-Macías, Villasís-Keever, and Miranda-Novales (2016); they provide systematic methodologies applicable to ethical evaluations, while Rojas (2014); offers perspectives for structuring equitable governance. The study concludes that AI's success lies not in its technical sophistication but in its ability to enrich human experience, expand freedoms, and strengthen social cohesion.
Downloads
References
Barreto, A. (2012). El progreso de la Estadística y su utilidad en la evaluación del desarrollo. Papeles de Población, 18(73), 1-31, e-ISSN: 1405-7425. México: Universidad Autónoma del Estado de México.
Corvalán, J. (2011). El Esquema Cruzado como forma de Análisis Cualitativo en Ciencias Sociales. Cinta de Moebio, (42), 243-260, e-ISSN: 0717-554X. Recuperado de: http://dx.doi.org/10.4067/S0717-554X2011000300002
Floridi, L., & Cowls, J. (2019). A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, 1(1), 1-14, e-ISSN: 2644-2353. Retrieved from: https://doi.org/10.1162/99608f92.8cd550d1
Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., … Gebru, T. (2019). Model Cards for Model Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, 220-229. ISBN: 978-1-4503-6125-5. United States: Association for Computing Machinery.
Naranjo, M. (2009). Motivación: perspectivas teóricas y algunas consideraciones de su importancia en el ámbito educativo. Revista de Educación, 33(2), 153-170, e-ISSN: 0379-7082. Recuperado de: https://doi.org/10.15517/revedu.v33i2.510
Rendón-Macías, M., Villasís-Keever, M., & Miranda-Novales, M. (2016). Estadística descriptiva. Ram. Revista Alergia México, 63(4), 397-407, e-ISSN: 0002-5151. México: Colegio Mexicano de Inmunología Clínica y Alergia, A.C.
Rojas, B. (2014). Investigación Cualitativa: Fundamentos y praxis. ISBN: 980-273-471-3. Caracas, Venezuela: Fondo Editorial de la Universidad Pedagógica Experimental Libertador - FEDUPEL.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 INDTEC, C.A.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The content of the journals of this site, are under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.

 
						 
							 
			
		 
			 
			 
				


