Ethical Applications of Cognitive Autonomy Regarding Artificial Intelligence in University Education
Aplicaciones Éticas de Autonomía Cognitiva con Respecto a la Inteligencia Artificial en la Educación Universitaria
DOI:
https://doi.org/10.29394/Scientific.issn.2542-2987.2024.9.33.18.382-403Keywords:
ethics, cognitive autonomy, artificial intelligence, higher education, educational technologyAbstract
The emergence of Artificial Intelligence (AI) in university education poses significant ethical and pedagogical challenges. This study analyzes, from a socio-critical perspective, the ethical implications of AI in the context of Venezuelan university education, with emphasis on cognitive autonomy. The research adopts a qualitative approach, using focus group interviews, participant observation, and exhaustive document review with students, teachers, and authorities from the Latin American and Caribbean University (ULAC), Caracas headquarters, Bolivarian Republic of Venezuela. The results reveal that AI is transforming teaching-learning processes through intelligent tutoring, adaptive platforms, and automated assessments, raising concerns about loss of control and algorithmic influence in decision-making. There is an evident need to develop contextualized ethical frameworks that consider Venezuela's socioeconomic and cultural particularities, as well as strengthen metacognitive competencies in students to preserve their autonomy. The study concludes that the ethical implementation of AI constitutes a philosophical, pedagogical, and sociocultural challenge requiring continuous reflection to enhance fundamental values in the Venezuelan educational system.
Downloads
References
Bellman, R., & Bellman, R. (1957). Dynamic Programming. Estados Unidos: Princeton University Press.
Bostrom, N. (2016). Superinteligencias: Caminos, Peligros, Estrategias. ISBN: 9788416511051. España: Teell Editorial, S.L.
Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. First Edition, ISBN: 978-0201119459. United States: Addison-Wesley.
Dehaene, S. (2009a,b). Reading in the Brain: The Science and Evolution of a Human Invention. First Edition. United Staes: Viking Adult.
Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2), 245-258, e-ISSN: 0896-6273. Retrieved from: https://doi.org/10.1016/j.neuron.2017.06.011
Haugeland, J. (1988). La Inteligencia Artificial. ISBN: 9789682314117. México: Siglo XXI Editores.
Hinton, G. (2007a,b). Boltzmann Machines. United States: University of Toronto.
Kurzweil, R. (1992). The Age of Intelligent Machines. ISBN: 9780262610797. United States: The MIT Press.
LeCun, Y., Bengio, Y., & Hinton, G. (2015a,b). Deep learning. Nature, 521, 436-444, e-ISSN: 1476-4687. Retrieved from: https://doi.org/10.1038/nature14539
Luger, G., & Stubblefield, W. (1997). Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 3ª Edition, ISBN: 978-0805311969. United States: Benjamin-Cummings Pub Co.
Márquez, E. (2008). Reflexiones sobre cómo construir el proyecto de tesis doctoral desde la perspectiva cualitativa. Tierra Firme, 26(103), 387-405, e-ISSN: 0798-2968. Venezuela: Fundación Tierra Firme.
Martínez, M. (1996a,b). Comportamiento humano: Nuevos métodos de investigación. ISBN: 978-968-24-5503-2. México: Editorial Trillas.
Minsky, M., & Papert, S. (2017a,b). Perceptrons: An Introduction to Computational Geometry. ISBN: 9780262343930. United States: The MIT Press.
Papert, S. (1982). Desafío a la mente: Computadoras y educación. Segunda Edición. Buenos Aires, Argentina: Ediciones Galápago.
Pinker, S. (2012a,b). El instinto del lenguaje. ISBN: 978-84-206-7192-5. España: Alianza Editorial.
Rich, E., & Knight, K. (1991). Artificial Intelligence. 2ª Edition, ISBN: 978-0070522633. United States: McGraw-Hill Education.
Russell, S., & Norvig, P. (2004a,b). Inteligencia Artificial: Un Enfoque Moderno. 2da Edición, ISBN: 978-84-205-4003-0. España: Pearson Educación, S.A.
Schalkoff, R. (1990). Artificial Intelligence: An Engineering Approach. ISE Editions, ISBN: 978-0071009324. United States: McGraw-Hill Education.
Winston, P. (1992). Artificial Intelligence. Third Edition, ISBN: 0-201-53377-4. United States: Addison-Wesley.
Guba, E., & Lincoln, Y. (2005). Paradigmatic Controversies, Contradictions, and Emerging Confluences. In N. K. Denzin & Y. S. Lincoln (Eds.). The Sage handbook of qualitative research. 3rd edition. (pp. 191-215). United States: Sage Publications, Ltd.
Contreras, L. (2011). Tendencias de los paradigmas de investigación en educación. Investigación y Postgrado, 26(2), 161-178, ISSN: 1316-0087. Venezuela: Universidad Pedagógica Experimental Libertador.
Denzin, N., & Lincoln, Y. (Eds.). (2018). The SAGE Handbook of Qualitative Research. 5th Edition. United States: SAGE Publications.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 INDTEC, C.A.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The content of the journals of this site, are under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.